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SUMMARY

Transcription, the first step of gene expression, is carried out by
the enzyme RNA polymerase (RNAP) and is regulated through
interaction with a series of protein transcription factors. RNAP
and its associated transcription factors are highly conserved across
the bacterial domain and represent excellent targets for broad-
spectrum antibacterial agent discovery. Despite the numerous
antibiotics on the market, there are only two series currently ap-
proved that target transcription. The determination of the three-
dimensional structures of RNAP and transcription complexes at
high resolution over the last 15 years has led to renewed interest in
targeting this essential process for antibiotic development by uti-
lizing rational structure-based approaches. In this review, we de-

scribe the inhibition of the bacterial transcription process with
respect to structural studies of RNAP, highlight recent progress
toward the discovery of novel transcription inhibitors, and suggest
additional potential antibacterial targets for rational drug design.
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INTRODUCTION

Bacteria are prokaryotic microorganisms representing one of
the three domains of life (1). While most bacteria occupy an

incredibly diverse range of ecological niches, a small proportion
can cause disease (2, 3). Due to the rate at which these pathogens
are acquiring resistance to antibiotics, the very real possibility that
we will not be able to effectively treat many infections is fast be-
coming reality (4, 5). A recent report projects that if there is no
concerted effort to discover and develop new antibiotics, by 2050
there will be �10,000,000 deaths per year associated with antibi-
otic-resistant infections, with an associated cost to the global
economy of �$1 trillion (6).

Prior to the clinical development of sulfonamides and pen-
icillin in the 1930s and 1940s, bacterial infections were the
primary cause of death for children and working-age adults.
This is rare now, and few people remain who can still recall life
before access to effective antibiotics. Since the 1960s, antibiotic
research and development by major pharmaceutical compa-
nies have dropped precipitously (7), and there has been com-
placency within the medical profession as well as the general
public based on the assumption that we can effectively control
and treat all microbial infections. The blasé overuse of these
precious drugs has contributed to the rate at which antibiotic
resistance has developed within hospital environments as well
as the community.

Antibiotic resistance represents a serious and growing prob-
lem in the treatment of bacterial infections (8). The dramatic
slowdown in development of new antibacterial agents has co-
incided with an alarming increase in the number of resistant,
multiresistant, and even totally antibiotic-resistant infections.
The new compounds released to market are almost all deriva-
tives of existing classes, and consequently cross-resistance is
often preexisting within the microbiome (9). Resistance is rap-
idly acquired by spontaneous or induced mutation and hori-
zontal gene transfer from resistant species. Decreased mem-
brane permeability, increased efflux capacity, enzymatic
inactivation, and direct mutation of the binding sites of drug
targets are the major causes of antibiotic resistance (10–14).
Consequently, structure-function-based studies on known and
potential targets essential to bacterial viability would help in
optimizing current antibiotics and for the rational design of
new antibacterial agents. Most clinically approved antibiotics
target bacterial cell wall growth/integrity, translation, and
DNA replication/segregation, while transcription appears to be
an underutilized target.

Transcription is the process by which RNA is synthesized from
its template DNA by the enzyme RNA polymerase (RNAP) (15).
So far there are only two antibiotics targeting bacterial RNAP on
the market: the rifamycin series (16) and fidaxomicin/lipiarmicin
(17). A transcription factor Rho inhibitor, bicyclomycin, has also
been commercialized, mainly for use as a growth promoter in
animal feedstock (18). Nevertheless, bacterial transcription repre-
sents an excellent target for novel antibacterial development for
the following reasons: (i) transcription is an essential process for
cell viability; (ii) bacterial RNAP and its associated transcription
factors are highly conserved, permitting the potential develop-
ment of broad-spectrum antitranscriptional antibiotics (19); (iii)
eukaryotic RNAP is not similar to its bacterial homolog at the
sequence level (barring the active site), which suggests low poten-

tial cytotoxicity (20); (iv) numerous high-resolution structures
are available, enabling structure-based drug design (21); and (v)
the essential RNAP-associated transcription factors are not con-
served between bacterial and eukaryotic cells, providing the op-
portunity for development of compounds targeting RNAP-tran-
scription factor interactions (22).

RNAP STRUCTURE AND FUNCTION

Overview of the Transcription Cycle

There are three main sequential steps in the transcription cycle:
promoter binding/initiation, RNA chain elongation, and termi-
nation. For transcription initiation to occur, the bacterial RNAP
core must associate with an initiation protein factor, �, forming a
holoenzyme, which is competent for specific binding to the pro-
moter regions on DNA (23). After promoter recognition, �14 bp
of DNA is melted upstream of the transcription start site to form
an open promoter complex (24). The template strand, including
the transcription start site, is directed toward the active site of
RNAP, where RNA synthesis is initiated (21). Several rounds of
abortive initiation are likely to occur, generating short transcripts
2 to 9 nucleotides (nt) in length (25).

Once about 12 nucleotides of RNA have been synthesized, �
factor is released, while RNAP escapes from the promoter and
undergoes a significant conformational change resulting in the
formation of a stable transcription elongation complex (EC) (21,
26). Actively transcribing EC is stably associated with template
DNA and RNA, adding one nucleotide (NMP) at a time to the
growing transcript. It is highly processive, transcribing at 30 to 100
nt/s along the DNA template in vivo (27). Once an intrinsic or
factor-dependent transcription termination signal is reached,
RNAP core is released from the template DNA, allowing initiation
of another round of transcription (28, 29).

Bacterial RNAP

In bacteria there is only one RNAP responsible for the transcrip-
tion of all classes of RNA (30), and the �350-kDa bacterial RNAP
core enzyme (subunit composition, �2��=�) consists of five sub-
units: two large subunits (� and �=), two � subunits, and an ac-
cessory subunit (ε) (Fig. 1A) (31–34). In the firmicutes, there is a
sixth subunit, ε, of unknown function (33). Due to recent ad-
vances in structural biology, high-resolution structures of RNAP
have been solved in different forms (see reference 35 for a com-
prehensive review of available structures), including core RNAP
(36), holoenzyme (37, 38), and initiation (39, 40) and elongation
(41) complexes.

Bacterial RNAP core enzyme has an overall “crab claw”
structure, being 150 Å long, 110 Å wide, and 115 Å tall (36). The
two � subunits lie at the back of the enzyme, and the two large
subunits � and �= interact extensively, each forming one “pin-
cer” of the claw (36). A number of important structural fea-
tures of bacterial RNAP can be identified from the core and
holoenzyme homology models (Fig. 1). The primary channel
formed by the cleft between � and �= is about 27 Å wide, which
is adequate to accommodate a double-stranded DNA (dsDNA)
template, allowing RNA synthesis to occur (36). The switch
region is located at the top of the RNAP clamp (Fig. 1C) and
which mediates opening and closing of the RNAP clamp to
allow DNA loading at the active site (15). The downstream face
of the active center is formed by the bridge helix (BH) (also
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referred to as the F helix) and the trigger loop (TL) (or G loop).
The BH extends directly across the active channel and splits it
into two separate channels, the downstream DNA (active)
channel and the secondary channel (Fig. 1A) (36, 42). The 10-
to 12-Å-wide secondary channel is not large enough for dou-
ble-stranded nucleic acids and is proposed to be involved in
nucleoside triphosphate (NTP) entry (36). On the upstream
side of RNAP, the � G region (�-flap) and the rest of the up-
stream boundary of the active site together form an RNA exit
channel, through which the newly synthesized RNA transcript
is threaded (Fig. 1B) (43). The �-helical motif at the top of the
�-flap, called the �-flap tip, is functionally important, as it is
the binding site for � region 4 and the essential elongation
factor NusA (Fig. 1D) (44). Although there are many contacts
between core RNAP and � factor, a solvent-exposed clamp-
helix (CH) region of the RNAP �= subunit (Fig. 1C) represents
the major site for � interaction (38).

Human RNAP

In the nuclei of eukaryotic cells there are three distinct multisub-
unit RNAPs: RNAP I transcribes rRNA precursors, RNAP II is
responsible for the synthesis of mRNA and certain small nuclear
RNAs, and RNAP III performs the synthesis of 5S rRNA and tRNA
(45). The overall architecture of RNAP is similar and the sequence
of the active site highly conserved in all living organisms, so drugs
targeting this region may have cross activity (30, 46, 47). Indeed,

�-amanitin, an anticancer drug that traps the bridge helix and
trigger loop in RNAP II, preventing nucleotide addition, is also a
bactericidal agent (48, 49). Consequently, cytotoxicity could be a
considerable issue when adopting a strategy of drug design based
on the conserved active-site region.

COMPOUNDS THAT INHIBIT TRANSCRIPTION

Considerable effort has been spent in the discovery of inhibitors of
bacterial transcription since the isolation of rifampin (RIF) (17),
and several reviews, listed in Table 1, have summarized the re-
search results from different perspectives. Representative struc-
tures for compounds with specific activities outlined in this review
are shown in Fig. 2 and will be referred to in the appropriate
sections below. These molecules bind to a diverse range of sites on
RNAP and inhibit transcription through binding to sites in and
around the primary channel, as well as targeting the secondary
channel and switch regions. The activity or interaction with RNAP
of transcription factors is also a source of established (bicyclomy-
cin) (Fig. 2) or emerging lead compounds.

Since the mid-20th century, most of the inhibitors of bacterial
transcription have been isolated from microorganisms, except for
synthetic squaramides, ureidothiophene, CBR703, and the SB se-
ries of compounds (Fig. 2) (50, 51). So far, however, only rifamy-
cins and fidaxomicin/lipiarmycin (Fig. 2) have been approved for
clinical use, and no new transcription inhibitor compounds are in
clinical trials. The high rate of acquisition of bacterial resistance

FIG 1 RNAP structure and functional motifs. In all panels the structure of the Thermus thermophilus RNAP elongation complex was used. (A and B) Side and
front views, respectively. � subunit, dark gray; � subunit, light gray; �= subunit, medium gray; � subunit, black. The DNA primary channel and secondary
channel for NTP entry are highlighted with yellow circles. Template-strand DNA, green; nontemplate-strand DNA, orange; RNA, red. The active-site magnesium
ion is shown as a cyan sphere. (C and D) Enlarged views from panels A and B, respectively, with functional regions colored and labeled. CH region, pale green;
rudder, cyan; switch, red; active-site residues (NADFDGD), purple; � link, orange; F loop, magenta, fork loop II, yellow; bridge helix (BH), blue; trigger loop
(TL), green; lid, bronze; zipper, brown; � flap tip, salmon. The approximate path of RNA through the RNA exit channel is indicated by the arrow in panel D.
Structure images were prepared using PDB files 1IW7 and 2O5I in PyMol v1.7.4 (Schrödinger, LLC).
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prevented the further development of many compounds, while
myxopyronins were sequestered by serum albumin, preventing
them from being free to access their target, CBR703 was proven to
be unattractive due to cytotoxicity, and the SB series were found to
have a nonspecific mode of action (52–54).

In the following sections, we describe binding sites and modes
of action of known inhibitors and envision some potential targets
for structure-based drug design.

PRIMARY CHANNEL INHIBITORS

The primary channel is a large cleft formed by the two large sub-
units �and �= and is highly conserved among RNAPs (31, 55). The
cleft has an overall positive charge, while the surface of RNAP is
mostly negatively charged. Specifically, � regions H and I interact
with �= region D, which positions the absolutely conserved -NAD
FDGD- �=D motif at the base of the cleft (Fig. 1C). The Mg2� ion
is chelated by the aspartate (D) residues from the NADFDGD
motif at the base of the channel, catalyzes nucleotide addition to
the growing RNA transcript, and may also be involved in DNA
melting (36, 56).

During elongation, a transcription bubble is formed when 10
to 12 bp of downstream duplex DNA yet to be transcribed enters
the active channel (21). The duplex DNA is then separated within
the active channel, and the newly synthesized RNA forms a 9- to
10-bp hybrid with the template DNA strand, with the 3= end of the
RNA positioned within the active site near the center of the en-
zyme (Fig. 1B). The nontemplate DNA strand is rewound with the
template DNA on the upstream side, and the length of the RNA-
DNA hybrid and DNA bubble stays approximately constant as
transcription proceeds (57). The four-step nucleotide addition
cycle starts with the binding of an NTP complementary to the
template DNA at the insertion site (i�1) in the active center. Ini-
tially, the TL is in its unfolded conformation (Fig. 1C and D), and
the NTP enters via the secondary channel to form a preinsertion
complex. Upon folding of the TL (see below), an insertion com-
plex forms. Catalyzed by the active-site-bound Mg2� ions, the
3=-OH group of the growing RNA chain attacks the �-phosphate
of the incoming NTP, resulting in one nucleotide addition to the
3= end of the RNA transcript and release of pyrophosphate (PPi).
The newly added RNA nucleotide is then translocated to the prod-
uct site (i site), exposing the next template base in the i�1 site for
the incoming NTP (39, 58, 59). The newly synthesized RNA tran-
script moves away from the active site through the RNA exit chan-

nel formed by the � subunit flap domain, as well as the �= lid and
zipper domains (Fig. 1C and D).

Rifamycins

Rifamycins (Fig. 2) were the first group of antimicrobials targeting
RNAP, discovered in the last century from metabolites of Amyco-
latopsis mediterranei (60). The first drug of this class was rifamycin
SV, which was used only intravenously and topically in clinics
(61). Rifampin (RIF), synthesized from rifamycin SV, is orally
effective and has broad-spectrum activity against Gram-positive,
Gram-negative, and especially mycobacterial pathogens (62). As it
is the key element in combinatorial antitubercular chemotherapy,
rigorous studies on the chemical derivation of RIF led to the de-
velopment of two analogues, rifabutin (RBT) and rifapentine
(RPT), possessing improved pharmacological characteristics (63,
64). Rifaximin was also derived from RIF and was approved for
the treatment of gastrointestinal disorders and hepatic encepha-
lopathy (64, 65).

Cocrystal structures of different rifampins with Thermus
aquaticus RNAP (66) and Thermus thermophilus holoenzyme (67)
indicated that they bind within the cleft close to the active center of
RNAP, which sterically hinders growth of the RNA product rather
than DNA binding or RNA synthesis sites (Fig. 3A and B). Bio-
chemical experiments also showed that RIF did not inhibit the
formation of the RNAP-promoter open complex but could stall
the formation of RNA products that are �3 nt (66–68). Structur-
ally, the rifamycin naphthyl group interacts with Escherichia coli �
subunit residues 146, 511, 513, 529, 531, 533, 534, 568, and 572,
and a recent cocrystal structure of E. coli RNAP holoenzyme and
RIF showed that it also interacts with � fork loop II, especially
residue 540 (69), while the remaining functional groups bind to
residues 143, 510, 511, 512, 514, 516, 525, 526, 564, and 761 (Fig.
3B). Artsimovitch et al. demonstrated that RIF and RPT bind to
RNAP in a similar fashion despite their different side chains,
whereas RBT can additionally interact with the � subunit (67)
(Fig. 3C).

The antimicrobial activity of RIF proved that the region adja-
cent to the active center of bacterial RNAP was a valid target for
discovery of drugs acting against transcription. However, the ease
with which resistance to RIF is gained by mutation at multiple sites
illustrates that there are significant problems with this site for the
development of antimicrobials with long therapeutic lives. While
alteration of the RIF binding site does have implications for cell

TABLE 1 Past reviews on inhibitors of bacterial transcription

Author(s) Yr Content summary (reference)

Darst 2004 Described four inhibitors, i.e., two classic molecules, rifampin and streptolydigin, and two new inhibitors, microcin J25 and
CBR703; their binding sites on bacterial RNAP structures were also examined (229)

Villain-Guillot et al. 2007 Summarized all of the inhibitors known to date; this complete review illustrated the chemical structures of the inhibitors and
their binding sites on RNAP (230)

Mariani and Maffioli 2009 A comprehensive review of all the inhibitors known to date; the progress of chemical modification of inhibitors and their
activity against bacteria, as well as clinical applications, were detailed (50)

Ho et al. 2009 Focused on the structure of RNAP and inhibitor complexes; four cocrystal structures of Thermus aquaticus RNAP with
rifampin and sorangicin and of Thermus thermophilus RNAP with streptolydigin, and myxopyronin were presented; the
authors also constructed a homology model of Mycobacterium tuberculosis RNAP in complex with myxopyronin (231)

Srivastava et al. 2011 A comprehensive review of the inhibitors myxopyronin, corallopyronin, ripostatin, and lipiarmycin, which target the switch
region; the sequence of this region is highly conserved in bacteria but not in eukaryotes, providing a new avenue for the
rational development of a potent new class of broad-spectrum antibiotics (136)
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FIG 2 Compounds that inhibit bacterial transcription. The compounds featured in this review are shown as chemical structures, illustrating the diversity in size
and complexity of RNAP inhibitors. The compounds are arranged with respect to their targets. The naphthyl group of rifampin in the primary-channel inhibitors
is circled, with the equivalent region of sorangicin also circled. Numbered circles: streptolol (1) and monosaccharide (2) moieties of streptolydigin, squarate ring
(3), benzylamine ring (4) and piperidine (5) groups of squaramides, and steroid-like carboxylic acid (6) and indolone (7) groups of DSHS0057. See the text for
further details.
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fitness, a whole-genome sequencing study of RIF-resistant Myco-
bacterium tuberculosis strains showed that alterations of residues �
187 and �= 434, 483, 485, 491, and 698 were compensatory (70). A
separate study with Staphylococcus aureus also showed that alter-
ations at � residues 471 and 481 gave intermediate levels of resis-
tance to RIF with no loss of cell fitness (71). Efforts to minimize
RIF drug resistance include combinatorial therapy (with isonia-
zid, ethambutol, and pyrazinamide for tuberculosis), short-term
use in clinical practice, and the development of new delivery
mechanisms such as nanoparticles (72) and metal conjugation
(73). Furthermore, chemical derivatives have also been developed,
such as the benzoxazinorifamycins, which demonstrate superior
affinity to RIF-resistant M. tuberculosis strains and reduced ad-
verse side effects caused by cytochrome P450 induction (69, 74–
76). Cocrystal structures showed that the interactions of benzox-
azinorifamycins with the RNAP � fork loop II and the �3 loop may
occur and may explain the improved biological activity (67, 69).
Careful inspection of the structure of E. coli RNAP in complex
with benzoxazinorifamycins suggests that the C-3= tail may pre-

vent �3 loop interaction with the 	3 and 	4 bases of the template
DNA, which is required for binding the initiating NTP at the i�1
site (69). Residue D513 of the �3 loop is able to interact with the
ansa ring of RBT (Fig. 3C, dotted line) (67), whereas benzoxazin-
orifamycin 2b (BZR) causes a distortion of the �3 loop that pre-
vents template DNA interaction (Fig. 3C, teal ribbon) (69). The
improved properties of the benzoxazinorifamycins has led to one
derivative, Rifalazil, entering, but failing, phase II trials for the
treatment of Chlamydia infection (77, 78).

Sorangicin

Sorangicin is a macrocyclic antibiotic isolated from Sorangium
cellulosum (79). A cocrystal structure of sorangicin with T. aquati-
cus RNAP demonstrated that this molecule bound to exactly the
same site as RIF adjacent to the active center and shared similar
interactions with the corresponding residues (Fig. 3B) (80). Thus,
the same mechanism of action, biological activity, and cross-resis-
tance with RIF mutants can be expected (81).

However, despite being structurally related to rifamycins,

FIG 3 Antibiotics that bind close to the active site. (A) Space-filled structure of T. thermophilus RNAP holoenzyme with core subunits (�, �, �=, and �) in gray
and initiation factor � shown as a slate blue cartoon. The catalytic Mg2� ion is shown as a cyan sphere, and its location is indicated by the red arrow and
star. The rifamycin/sorangicin binding site is shown in green, and the area used in panels B and C is boxed. The approximate rotations for regions shown
in panels B and C are indicated with arrows. In all panels the catalytic Mg2� ion is shown as a cyan sphere, and in panels B and C an initiating RNA
dinucleotide (orange) is shown adjacent to the active site. (B) Rifampin (RIF) (red) and sorangicin (SOR) (yellow) have overlapping binding sites. (C)
Rifabutin (RBT) (magenta) has improved binding to holoenzyme through interaction with D513 (red stick) located on a region of the � factor called the
�3 loop. When benzoxazinorifamycin 2b (BZR) (blue) is bound, the C-3= tail causes a distortion in the �3 loop (teal), preventing it interacting with the
template strand of DNA. (D) GE23077 (orange) binds in the i and i�1 sites, inhibiting RNA synthesis. The binding site is shown in pale green. ATP
entering RNAP via the secondary channel is shown in red. Rifamycin SV (RifSV) (orange) binds near to GE23077, and the two molecules can be covalently
linked to form a compound with activity against rifampin-resistant RNAP. Structure images were prepared using PDB files 1IW7, 1YNJ, 1YNN, 2A68,
2O5J, 4G7O, 4KN4, and 4OIR in PyMol v1.7.4 (Schrödinger, LLC).
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sorangicin comprises a more flexible skeleton than RIF, which
contains a naphthyl moiety (equivalent regions are circled in
Fig. 2), suggesting that the former might be able to adapt better
than RIF to conformational change and mutations in RNAP (80).
Studies on RIF and sorangicin against resistant mutant M. tuber-
culosis strains revealed that a narrower range of mutant strains
were resistant to sorangicin than to RIF and proved that RIF was
more sensitive to the change of shape of the binding pocket due to
its rigid structure, while sorangicin displayed more conforma-
tional flexibility, as demonstrated by molecular dynamics simula-
tions (80, 82).

Extensive studies have been performed on the structure-activity
relationship of rifampin and sorangicin, which could help us to
understand how the region around the active site of RNAP could
be exploited as a valid drug target (50, 66, 67). Using information
based on the RIF-RNAP cocrystal structure, five amino acids were
identified, corresponding to T. thermophilus RNAP � subunit res-
idues Q390, F394, R405, Q567, and Q633, and used in fragment-
based drug design. Two compounds containing four functional
groups designed for binding to residues Q390, F394, R405, and
Q567 displayed good in vitro activities of 70 and 62 
M, respec-
tively (83). However, R405 is not conserved in E. coli (T525), and
these compounds were subsequently also shown to inhibit E. coli
�-galactosidase but not other E. coli or mammalian enzymes (84).

GE23077

GE23077 (Fig. 2) was isolated from an Actinomadura sp. in 2004
and is a relatively new macrocyclic heptapeptide antibiotic (85).
The cocrystal structure of T. thermophilus RNAP with GE23077
has recently been published, which illustrated that the compound
bound to the i and i�1 sites of the active center, adjacent to the
catalytic Mg2� ion and close to the RIF binding site (Fig. 3D) (86).
More precisely, it was demonstrated using saturation mutagenesis
that E. coli � subunit residues P564, E565, G566, N568, R678,
M681, N684, M685, Q688, K1065, K1073, and H1237 and �= res-
idues D462, T786, and A787 were involved in binding with
GE23077.

GE23077 alone is not a particularly good antibiotic, as it has
poor membrane permeativity due to its hydrophilic nature and
shows good antibacterial activity only when used against �tolC
strains or in combination with a membrane-perturbing agent (85,
87). Chemical derivation does not result in a great improvement
of antibiotic activity (88). However, the target-dependent resis-
tance spectrum for GE23077 was much smaller than those for RIF
and other RNAP inhibitors, with resistant substitutions being ob-
tained at only four residues (E565, G566, M681, and N684) in the
� subunit (86), suggesting that the i and i�1 sites at the active
center might be a good target for drug discovery.

By combining GE23077 and rifamycin SV, a bipartite molecule
which bound to adjacent sites near the active site was created (Fig.
3D) (86). This compound demonstrated excellent activity against
GE23077 or RIF-resistant RNAP, showing that the RIF binding
pocket and GE23077 binding i and i�1 sites could be considered
for use as a combined target for drug design.

MOBILE ELEMENTS OF THE PRIMARY CHANNEL

The activity of RNAP is highly regulated during all stages of the
transcription cycle, and a great proportion of the regulation is
mediated via mobile structural elements adjacent to the active site.
The conserved 37-amino-acid (aa) bridge helix (BH) in the �=

subunit of RNAP spans the DNA binding cleft downstream of the
catalytic center and makes tight contacts with the mobile �= trig-
ger loop (TL) (Fig. 1C and 4A and B). The TL and BH are involved
in the regulation of substrate loading and nucleotide addition by
switching the DNA binding cleft between open and closed confor-
mations. The open conformation (Fig. 4A) allows the transloca-
tion of the 3= end of the RNA transcript and release of the pyro-
phosphate by-product (89). Bending of the BH toward the DNA/
RNA hybrid has been proposed to facilitate RNA translocation
(90, 91). The closed conformation (Fig. 4B) involves refolding of
the TL into a three-helix bundle with the BH into the catalytic
conformation (59). The three-helix bundle aligns the NTP sub-
strate with the active site, as well as shifting the position of the 3=
end of the RNA and catalytic Mg2� ions (92). Residues in the
amino-terminal extension of the BH, the F-loop, and the �-link
(Fig. 1C) contact the TL directly and stabilize its refolding (93).

Streptolydigin

Streptolydigin (STL) was isolated from Streptomyces lydicus cul-
tures in the last century, even earlier than the discovery of rifamy-
cins (94–96). This molecule is a derivative of tetramic acid con-
taining an acyl side chain (streptolol) and a monosaccharide (Fig.
2, circles 1 and 2, respectively), and it displayed broad-spectrum
antibacterial activity by inhibiting bacterial transcription initia-
tion, elongation, and pyrophosphorolysis (97). Extensive studies
on STL have been performed since its isolation, and it was dem-
onstrated that STL could stabilize the translocation state by pre-
venting the conformational changes in the BH and TL during the
nucleotide addition cycle, thus decreasing the rate of nucleotide
addition (98, 99).

The cocrystal structure of STL with T. thermophilus RNAP
showed that STL bound to the region adjacent to the active site,
which is functionally involved in the nucleotide addition cycle (59,
98, 99). More specifically, the streptolol side chain of STL interacts
with the BH and the “STL pocket,” which is formed by E. coli �
residues 538 to 552 and 557 to 576 (98), while the tetramic acid
moiety binds to the TL, causing its displacement (Fig. 4C, dashed
arrow). In fact, deletion of the TL can increase the binding affinity
of T. thermophilus RNAP to STL (98). The sugar moiety substi-
tuted on the N-tetramic acid was not thought to interact directly
with RNAP, but the cocrystal structure with an RNAP-DNA com-
plex revealed that it forms a hydrogen bond with the downstream
DNA and hydrophobic interactions with the DNA and TL (59).
Analysis of the same cocrystal structure revealed that the down-
stream DNA also interacts with the streptolol side chain and the
tetramic acid of STL.

Although STL was shown to bind multiple sites within RNAP,
most of the interactions were hydrophobic van der Waals forces
(59, 98, 99), except for the interaction of the streptolol ring with �
fork loop II residue R548 and the interactions of the acetamide
substitution of tetramic acid with �= BH residues K789 and N792
(59). It was demonstrated that E. coli RNAP with a � subunit
R548A substitution was resistant to STL, and enzyme with an
N792D substitution in the �= subunit was 75 times more sensitive
than the wild type to STL due to enhancement of the polar inter-
action with acetamide (98).

Bacterial resistance to STL was first observed many years ago,
and a saturation mutagenesis study isolated 72 independent resis-
tant mutations on 26 residues, suggesting that it may not be a good
antibiotic for further development, despite its specificity for bac-
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terial RNAP (59, 100, 101). However, the information obtained
from studies of STL binding to RNAP may help with the
development of RNAP inhibitors targeting the nucleotide addi-
tion cycle.

Salinamide

Salinamides A to E are a series of bicyclic polypeptidic molecules
isolated from marine and soil Streptomyces spp. (102–104). Salin-
amides A and B (Fig. 2) displayed good inhibition of transcription
in both Gram-positive and -negative organisms and with moder-
ate antibacterial activity, which was probably due to the hydro-
philic peptidic structure having poor membrane-crossing proper-
ties (104). The cocrystal structure of salinamide A with E. coli
RNAP holoenzyme demonstrated that it bound to a region be-
tween the BH and secondary channel (Fig. 4D) and involved in-
teraction with �= residues R738, R744, L746, M747, A748, S775,
and K781 and � residues D675 and N677. These amino acids are

not conserved in eukaryotic RNAP, accounting for the specificity
of this antibiotic against bacteria (105). A mutagenesis study to
identify amino acid substitutions conferring salinamide A resis-
tance correlated well with the information obtained from the co-
crystal structure. Substitutions in �= BH residues R738, A779, and
G782 and � residues D675 and N677 result in resistance to salin-
amide A.

During the nucleotide addition cycle, salinamide A may also
interact with the TL due to conformational changes in RNAP
(105). Although the binding site of salinamide A was different
from that of STL and did not show cross-resistance with other
RNAP inhibitors, functionally salinamide A was similar to STL, as
it did not prevent the formation of a transcription open complex
but was able to inhibit transcription initiation and elongation,
probably by prevention of TL refolding due to steric interference
(Fig. 4D, dashed line).

FIG 4 Inhibitors that target the bridge helix and trigger loop. (A and B) Bridge helix (BH) (blue) and trigger loop (TL) (green) in alternative conformations. The
BH and TL colors are conserved in all panels in this figure, and active-site Mg2� ions are shown as cyan spheres. Bending of the BH in panel A, indicated by the
dashed straight arrow, aids translocation of the transcript to help incorporation of the incoming NTP, shown in red behind the BH. The TL is in the “open”
conformation, allowing NTP entry into the active site. In panel B, the BH is straight and the TL has formed extended � helices behind the BH, forming a “closed”
conformation that helps position the incoming NTP (red) in the active site. The movement of the TL from an open to a closed conformation is indicated with
the curved dashed arrow in panel A. (C) Streptolydigin (STL) bound in a space-filled model of RNAP. Amino acids involved in interaction with STL are colored
yellow. The STL pocket formed by the BH and � fork loop II is circled. The TL in the open conformation (shown as a cartoon) clashes with the tetramic moiety
of STL, providing an understanding of how its deletion can stabilize STL binding. (D) Salinamide (SAL) bound within the secondary channel adjacent to the TL
and CBR703 bound adjacent to the F loop (magenta). The binding site for SAL is shown in orange and that for CBR703 in yellow. RNAP surface and cartoon
elements are shown in semitransparent form so that CBR703 within its binding site can be seen. Conformational change of the TL from the open to the closed
form (transparent cartoons) will be sterically blocked by SAL. Structure images were prepared using PDB files 1IW7, 1ZYR, 2O5J, 4G7O, 4MEX, 4OIP, 4XSX, and
4ZH2 in PyMol v1.7.4 (Schrödinger, LLC).
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Although salinamide A is not suitable for further clinical devel-
opment due to poor membrane permeativity, the binding site
close to the secondary channel and nucleotide addition site repre-
sents an interesting validated target for new drug design.

CBR Compounds

The CBR series (Fig. 2) consists of small molecules comprising
two linked aromatic rings, isolated by screening a chemical com-
pound library to inhibit E. coli transcription (106). CBR703, to-
gether with CBR9379 and CBR9393, demonstrated the ability to
inhibit transcription elongation by stabilizing elongation complex
isomerization and slowing translocation (107). The inhibitory ac-
tivity of these compounds is proposed to be due to an allosteric
effect that prevents TL folding, mediated via the F-loop, and the
inhibition of BH movement at its N-terminal hinge (108). An
interesting aspect of their antibacterial activity is their ability to
inhibit biofilm formation, which is especially important in a clin-
ical setting as biofilms are a major source of nosocomial infection
(109).

Recent X-ray crystal structures show that CBR703 and several
derivatives bind to E. coli RNAP between � lobes 1 and 2 to regions
linking the � flap loop II and �DII motifs, the �= F-loop, and the
N-terminal portion of the �=BH (Fig. 4D) (108, 110). Specifically,
CBR703 forms interactions with � residues V550, H551, P552,
Y555, R637, G640, E641, and S642 and �= residues K749, P750,
I755 (part of the F-loop), P770, F773, I744, and H777 (BH N
terminus) (108). Most of these interactions are hydrophobic, with
only � S642 making a polar interaction with the amidoxime moi-
ety of CBR7903 (108, 110). The structural information agrees well
with data inferring the binding site from analysis of resistance
mutants (at � P560, R637 and S642) (106), and this was further
elaborated by saturation mutagenesis experiments that identified
a further 11 resistance alleles (110). Despite resistance arising at 14
separate loci, the rate of resistance due to spontaneous mutation
in one tested strain was extremely low at �1  10	12, which is 102-
to 104-fold lower than those for other antibiotics, suggesting that
the CBR binding site may have potential as a useful resistance-
refractory binding site (110). Interestingly, two mutations (�=
P750L and �= F773V) make cells dependent on CBR compounds
for growth as well as conferring resistance, although the mecha-
nism for this is currently unknown (108). The predicted structure
of CBR703 bound to RNAP determined by in silico docking was
very similar to what was found in the X-ray crystal structures,
except it was inserted into the two hydrophobic pockets the wrong
way around (107, 108, 110). This is not surprising since CBR703 is
highly symmetrical and brominated derivatives were needed to
unambiguously determine the orientation of the compound in the
structural experiments (108, 110).

Despite the promise of the CBR family, significant hurdles still
need to be overcome before they can be considered bona fide
antibiotic leads. Although these compounds have good activity
against RNAPs from problem Gram-negative organisms, includ-
ing Klebsiella pneumoniae, and are reported to have activity
against Gram-positive Staphylococcus aureus, despite the presence
of N rather than S at the �642 position that is essential for binding
and specificity, they have antibacterial activity only against strains
in which the TolC outer membrane drug efflux pump has been
deleted (53, 108, 110). In addition, despite not inhibiting human
RNAP II activity in vitro, the compounds are cytotoxic (53). The
fact that they are hydrophobic compounds and bind serum com-

ponents may have affected assays that suggest that CBR703 has no
effect on human tissue culture cell lines at concentrations as high
as 100 
M (53, 110). The inhibitory effect on biofilm formation
may also be an artifact, as it occurs at high concentrations (2 to 400

M) when CBR703 starts to precipitate at 100 
M, and the hy-
drophobic aggregates may have prevented biofilm formation (53).
Nevertheless, the information gained from the CBR compounds
may provide approaches for development of allosteric inhibitors
of transcription that bind the same site. The close proximity (�8 Å
between the closest atoms) of the CBR703 and salinamide binding
sites may also permit fragment-based development of bipartite
inhibitors.

SECONDARY-CHANNEL INHIBITORS

During transcription, NTP substrates need to be made available
for the growing RNA chain, but the active site is buried deep inside
RNAP at the apex of the primary channel (Fig. 1A). The funnel-
shaped secondary channel is formed by the �= BH spanning the
DNA binding clamp immediately downstream of the active site
(36). The secondary channel is about �12 Å in diameter, which is
too narrow for double-stranded nucleic acids and allows the pas-
sage of only one NTP at a time, and the negative electrostatic
potential that predominates in the secondary channel imposes a
further constraint on NTP diffusion (55). Several transcription
factors regulate RNAP activity through interaction with the sec-
ondary channel, such as the Gre factors DksA and Rnk (111–114).
For example, in a backtracked elongation complex, the 3= end of
the RNA transcript slides into the secondary channel, and the
acidic tips of the Gre factors penetrate into the enzyme close to the
active site and facilitate an intrinsic RNA cleavage activity of
RNAP (115). The backtracked RNA transcript is then released
from the secondary channel, allowing the stalled transcription
elongation complex to be rescued (116).

Tagetitoxin

Tagetitoxin (Fig. 2) was isolated from a culture of the plant patho-
gen Pseudomonas syringae pv. tagetis and was expected to have
broad-spectrum activity on RNAP (117). A series of studies
showed that it targeted chloroplast RNAP and RNAP III (but not
RNAPs I and II) and could also target bacterial RNAP by inhibi-
tion of transcription elongation (118, 119). Despite this in vitro
activity, tagetitoxin has no antibacterial activity against live cells
due to low cell permeativity (120).

The structure of tagetitoxin in complex with T. thermophilus
RNAP (Fig. 5A) shows that it binds in the secondary channel
mainly via polar interactions due to its high oxygen content,
which also results in poor membrane permeativity of the com-
pound (120). �= residues N458, Q504, S733, and Q736 are in-
volved in binding to the bicyclic ring of tagetitoxin, while � resi-
dues R678 and R1106 and �= residue R731 interact with the
phosphate group, which also binds to a noncatalytic Mg2� ion
(121). It has also been proposed that tagetitoxin is capable of in-
teraction with the TL region (Fig. 5A, closed form, green cartoon),
which could account for its inhibitory effect on transcription, but
this is a currently unresolved issue (121–123). While tagetitoxin is
not an antibiotic, further studies to resolve its mechanism of in-
hibition may provide important information for the development
of new leads that have a similar binding site. The structure of
tagetitoxin has also been revised recently (124) and is the structure
presented in Fig. 2, which may help with the development of new
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leads through reexamination of electron density maps of the
RNAP-tagetitoxin structure along with structure-activity rela-
tionship analysis.

Microcin J25

Microcin J25 (Fig. 2) is a 21-mer peptide produced by E. coli AY25
that is active against Gram-negative bacteria (125, 126). It has a
very unusual lassoed tail structure comprising a ring with the C-
terminal end passing through the center (127–129). It inhibits
abortive initiation and elongation by competitively preventing
NTP uptake or binding (130). Saturation mutagenesis identified
substitutions on 51 residues in the regions of the � and �= subunits
that form the secondary channel, which result in resistance to
microcin J25. The binding site was proposed to comprise �= resi-
dues 498 to 504, 732 to 733, 922 to 926, and 1244 to 1248 (Fig. 5B)
(130). The inhibitory constant (Ki) of microcin J25 was also mea-
sured to be approximately 20 
M (131), but due to the relatively
low potency, narrow spectrum, and very large number of substi-
tutions that result in resistance to the compound, it is not partic-
ularly amenable for further development.

SWITCH REGION INHIBITORS

The overall architecture of the RNAP crab claw undergoes a series
of conformational changes to allow template DNA to access the
catalytic center. One of the pincers of the claw formed by part of
the �= subunit (termed the clamp region) has been shown to ex-
hibit significant structural flexibility (26, 74) and is hinged, which
enables widening of the claw, helping to load DNA into the active
site. The clamp then swings back to close the active channel in
order to retain the DNA template in the transcription bubble dur-
ing transcription elongation. The swing motion of the clamp is
regulated by the switch region, which is located at the base of the
clamp domain (15, 76) (Fig. 1C and D). There are five segments of
the switch region, termed “switch 1” to “switch 5.” In particular,
switches 1 and 2 undergo relatively large conformational changes
to mediate clamp movement (132). Important residues of the
switch region form direct interactions with the DNA template as
well as the nascent RNA transcript, serving regulatory roles in

DNA loading/unwinding and clamp closure during initiation and
elongation (41).

Myxopyronin, Corallopyronin, Ripostatin, and Squaramides

Myxopyronins (Fig. 2) were isolated from cultures of Myxococcus
fulvus and displayed broad-spectrum antibacterial activity against
Gram-positive and -negative bacteria by inhibiting transcription
initiation (133, 134). Mechanistic studies showed that myxopy-
ronins bind to the switch region and lock the clamp and switch
regions in a partly closed/fully closed conformation. This prevents
the clamp from opening and RNAP from binding double-
stranded DNA during the transition from a closed to an open
complex during transcription initiation (132, 135).

The binding site of myxopyronin A and 8-desmethyl myxopy-
ronin B on T. thermophilus RNAP has been determined and
shown to comprise a hydrophobic pocket formed by “switch 1,”
“switch 2,” and adjacent segments, including � residues 1270 to
1292 and 1318 to 1328 and �= residues 330 to 347, 1319 to 1328,
and 1346 to 1357 (132, 135). Although the switch region is con-
served across prokaryotic and eukaryotic RNAPs, the adjacent
segments are conserved only in bacterial RNAPs, which may ex-
plain the specificity of myxopyronins against bacteria (132, 133).
It was shown that � E1272, E1279, and S1322 and �=G344, K345,
and K1348 were involved in polar interactions with both myxopy-
ronin A and 8-desmethyl myxopyronin B. Mutagenesis studies
demonstrated that amino acid substitutions at � residues E1279
and S1322 and �= residue K345 generated resistance against 8-des-
methyl myxopyronin B, while changes at � V1275 and L1291 and
�= K345 resulted in resistance to myxopyronin A (132, 135).

It is worth noting that corallopyronin, which is structurally sim-
ilar to the myxopyronins, as well as the structurally distinct ri-
postatin, demonstrated the same inhibitory activity on transcrip-
tion initiation, and the amino acid substitutions that resulted in
resistance to these molecules also overlapped (136–138). These
results indicated that corallopyronin and ripostatin also bind to
the switch region (132).

Squaramides (Fig. 2) are a series of synthetic small molecules
identified in a high-throughput screen using a bacterial transcrip-

FIG 5 Secondary-channel binding compounds. (A) Tagetitoxin bound inside the secondary channel. The binding site is shown in yellow with the TL (green) in
the closed conformation as a cartoon to aid visualization of tagetitoxin, and the BH is shown in blue. (B) Binding site for microcin J25 in yellow, with the TL
surface rendered in the open conformation. No structure of microcin J25 in complex with RNAP is available, but modeling indicates that it would block the
secondary channel, preventing NTP entry (rendered as a semitransparent red surface). Structure images were prepared using PDB files 1PP5 and 2BE5 in PyMol
v1.7.4 (Schrödinger, LLC).
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tion-coupled translation assay with an in vitro 50% inhibitory
concentration (IC50) as low as 0.3 
M (51). It was then demon-
strated that these compounds were inactive against the translation
process by substituting mRNA for plasmid DNA. The compounds
had no activity against representatives of the ESKAPE pathogen
group (139) but did show weak activity (MIC values of 100 to 200

M) in wild-type Haemophilus influenzae that could be improved
on deletion of the acrB gene, which encodes a component of the
drug efflux system.

These squaramide derivatives comprise an isoxazole containing
a sulfonamide substitution on a four-member squarate ring, as
well as a benzylamine moiety and a piperidine as its linker to the
squarate (Fig. 2, circles 3, 4, and 5, respectively). Cocrystal struc-
tures of two squaramides with E. coli RNAP holoenzyme have
recently been published, which showed that their major binding
site was broadly similar to that of the myxopyronins within the
switch 1 and 2 regions, with less substantial interaction with
switch regions 3 and 4 (140). The cocrystal structures also dem-
onstrated that the binding of squaramide compounds to RNAP
pushed switch 2 into the DNA binding main channel of RNAP,
which would prevent the correct positioning of the melted tem-
plate DNA. Mutagenesis studies using H. influenzae RNAP con-
firmed that �= residues A1323, L1332, and K1348 and � residue
L1326 (E. coli numbering) interacted directly with squaramides,
while mutations at � residues Q1257, E1279, D1296, and P1320
may also affect squaramide binding (51). Squaramides have po-
tential for drug development, as they are small synthetic molecules
and have plenty of options for structural elaboration and because
the cocrystal structures with RNAP showed that they did not com-
pletely occupy the area encompassing the switch region.

Fidaxomicin and Lipiarmycin

Fidaxomicin (tiacumicin B) (Fig. 2) is a derivative from fermen-
tation products of Dactylosporangium aurantiacum and is struc-
turally very similar to lipiarmycin, a metabolite from Actinoplanes
deccanensis (141–143). Both of these compounds target bacterial
RNAP and exhibit antibacterial activity selectively against Gram-
positive bacteria, and fidaxomicin is now used for the treatment of
Clostridium difficile-associated diarrhea (CDAD), with efficacy
similar to but relapse rates lower than those for vancomycin (144).

There is currently no published structure of fidaxomicin or li-
piarmycin in complex with RNAP, but biochemical experiments
indicated that both of these molecules bind to the switch region
(136, 145, 146). Lipiarmycin did not prevent promoter binding
but could inhibit promoter DNA melting and �-dependent tran-
scription, as well as template strand DNA binding to RNAP. A
mutagenesis study demonstrated that deletion of �70 subunit re-
gion 3.2 residues 513 to 519 of E. coli RNAP and mutation at
switch 2 residue R337 resulted in resistance to lipiarmycin, sug-
gesting that it might target both the � factor and the switch region
to prevent formation of a transcription open complex (145).
However, despite having analogous structures and the fact that
amino acid substitutions at appropriate sites result in cross-resis-
tance between lipiarmycin and fidaxomicin, fidaxomicin is prob-
ably a more promising compound, as deletion of the �3 loop does
not result in resistance to the drug (146). These results indicate
that the way in which these molecules function to inhibit tran-
scription is yet to be fully elucidated.

INHIBITORS WITH UNKNOWN TARGETS

Ureidothiophene was discovered though chemical library screen-
ing against S. aureus RNAP holoenzyme and demonstrated good
antibacterial activity against Gram-positive bacteria, including S.
aureus and S. epidermidis (147). However, mammalian albumin
binds tightly to ureidothiophene, eliminating its in vivo activity.

Thiolutin and holomycin are types of pyrrothine natural prod-
ucts isolated from Streptomyces luteosporeus and Streptomyces cla-
vuligerus, respectively (148, 149). Both compounds demonstrated
broad activity against bacterial and fungal RNAPs, and functional
analysis showed that that they could inhibit bacterial transcription
elongation and yeast transcription initiation (149–151).

Etnangien is a natural antibiotic isolated from the Gram-neg-
ative soil bacterium Sorangium cellulosum, a member of the myxo-
bacteria with a particularly large (�13-Mb) genome that produces
many secondary metabolites with a wide range of potential med-
ical applications. Etnangien displayed activity against Gram-pos-
itive bacteria with MICs as low as 0.06 
g/ml but with no effect
against Gram-negative organisms (152). Although E. coli was
shown to be resistant to etnangien, in vitro inhibitory activity
against E. coli DNA polymerase and RNAP and low cytotoxicity
against a mammalian cell line was observed.

TRANSCRIPTION FACTORS AND RNAP BINDING SITES AS
TARGETS

Transcription Factor Overview

Each step of the transcription cycle is highly regulated by tran-
scription factors during normal cell growth and in response to
environmental signals. To start transcription at the appropriate
site, RNAP must be associated with an initiation factor. Most bac-
teria have one primary � factor for the transcription of housekeep-
ing genes (�70 in Gram-negative bacteria and �A in Gram-positive
bacteria) and one or more alternative � factors for transcription of
specific subsets of genes in response to environmental stimuli
(153, 154). In the elongation phase, the � factor dissociates from
RNAP while elongation factors become associated (155). Elonga-
tion factors represent a diverse range of proteins that regulate
transcription activity, such as modulating transcription rates, the
response to pause and termination signals, rescue of stalled/back-
tracked complexes, and removal of protein roadblocks (156). In
addition, the compositions of transcription complexes (TCs) in-
volved in mRNA and rRNA synthesis are quite different (157,
158). TCs involved in rRNA synthesis are resistant to pausing
signals and transcribe at higher rates than those involved in
mRNA synthesis. The difference in responses of RNAP to pause
signals, etc., during mRNA and rRNA synthesis is because of its
association with different suites of elongation factors (157, 159,
160). Many of these transcription factors are essential for bacterial
viability and are not highly conserved in eukaryotic cells. There-
fore, the factors as well as their binding sites on RNAP represent
potential novel drug targets (Fig. 6).

Termination Factor Rho

The bacterial transcription termination factor Rho is a ring-
shaped homohexameric RNA translocase. Each Rho protomer has
two distinct functional domains: the N-terminal oligonucleotide/
oligosaccharide binding (OB) domain, which constitutes Rho’s
primary RNA binding site, and the C-terminal domain with a
secondary RNA binding and ATP binding site (29, 161). The Rho
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hexamer exists in two forms, as an open or a closed ring. Open-
form Rho binds to a specific Rho utilization site (rut site) on the
RNA transcript via its N-terminal primary RNA binding site, and
the newly synthesized RNA is then guided through the primary
binding site into the central hole of the hexamer, where the ring
closes and RNA binding triggers ATP hydrolysis (29). It is still
unclear whether Rho binds to RNAP throughout/for extended
periods of the transcription cycle or only during the final stages of
termination, but direct interaction with RNAP appears to be re-
quired to induce allosteric changes in the active site of RNAP to
terminate transcription (162).

Bicyclomycin. Bicyclomycin (Fig. 2) was isolated from Strepto-
myces sapporonensis and is active predominately against Gram-
negative bacteria (163), although it is reported to be more effective
against problematic nosocomial infections such as Klebsiella
pneumoniae and Acinetobacter baumannii when used in combina-
tion with inhibitors of translation (164). While Rho is essential for
viability in many Gram-negative organisms, Gram-positive or-
ganisms appear to be less dependent on it, although it is important
in preventing transcription of noncoding RNA in the latter and
has activity against Micrococcus luteus (165, 166). Bicyclomycin is
the only known antibiotic to target Rho, and it does not affect
RNA or ATP binding to Rho but does inhibit Rho-dependent
transcription termination and ATP hydrolysis (167–169). Substi-
tutions in E. coli Rho residues L208, M219, S266, and G337 con-
ferred resistance to bicyclomycin, suggesting that Rho was the
binding target of bicyclomycin (170, 171).

A cocrystal structure of E. coli open-form Rho and bicyclomy-

cin indicated that the binding site was between two C-terminal
domains of Rho protomers, close to the ATP binding site (Fig. 7A)
(172). The bicyclomycin binding pocket is formed by residues
E211, R212, D265, S266, and R269 of one protomer and G337 of
the adjacent protomer, while bicyclomycin also interacts with the
associated Mg2� ion that is required for ATP hydrolysis (Fig. 7B).

The RNAP-� Interaction

� factors are required for initiation of transcription. In all bacteria,
the general housekeeping � factor (�70 in Gram-negative bacteria
and �A in Gram-positive bacteria) is absolutely essential for cell
viability (173, 174). � factors are flexible elongated proteins that
make multiple contacts with RNAP when forming a transcription
initiation complex. However, only one region of the � factor,
called �2.2, is absolutely necessary for initiation complex forma-
tion, and it binds to a region of the �= subunit of RNAP called the
�= clamp helix (CH) region (175–177) (Fig. 1B). The �2.2-CH
interaction involves �= residues R275, R278, R281, L282, I291,
N294, and M298 and �70 residues Q403, Q406, E407, I410, and
M413 (37, 38, 176, 177), but this is a nontraditional drug target as
it lacks any deep clefts, which are considered desirable binding
sites for small molecules. Nevertheless, a peptide-based study
showed that peptides mimicking �2.2 could inhibit RNAP-� bind-
ing to prevent in vitro transcription initiation, and prevention of �
production by antisense peptide nucleic acids could inhibit the
growth of clinically relevant multidrug-resistant S. aureus (178,
179).

The GKL series. The GKL series (Fig. 2) is a class of bis-indole-

FIG 6 Transcription factor interaction network. The space-filled RNAP elongation complex is shown in gray, with template-strand DNA in green and
nontemplate-strand DNA in orange. Arrows indicate known interactions, although the binding sites for Rho and NusE on RNAP are not known. Subscript
N and C indicate N- and C-terminal protein domains. NusGN binds to the CH region of RNAP and across the active channel and has an overlapping
binding site with region 2.2 of initiation factor �. NusGC can partner switch between Rho and NusE as appropriate. NusE forms a heterodimer with NusB
and binds RNAP. NusAN and region 4 of � have overlapping binding sites on the � flap tip helix at the top of the RNA exit channel. All of these interactions
could potentially be exploited in the development of new antimicrobial compounds. Structure images were prepared using PDB file 2O5I in PyMol v1.7.4,
Schrödinger, LLC.
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derived compounds targeting bacterial transcription based on the
strategy of structure-based drug design (177). Detailed binding
studies enabled the characterization of the precise contributions
of individual amino acids to the RNAP-� interaction (176, 177).
This resulted in the construction of a pharmacophore model
which was used to screen an in-house compound library. Careful
selection of potential hit compounds resulted in �1/3 having po-
tent in vitro inhibitory activity against the formation of RNAP-�
complexes (176, 177, 180).

GKL003 was shown to specifically bind to the �= subunit CH
region and had a Ki of �6 nM as determined from in vitro tran-
scription assays (177). Compared to fidaxomicin, which functions
only when added prior to RNAP-� interaction, GKL003 is a com-
petitive inhibitor which can also inhibit transcription initiation
after the holoenzyme has formed (177). Despite having excellent
activity in vitro, GKL003 had poor activity against live cultures of
bacteria, probably due to its low solubility in aqueous media and
inability to cross bacterial membranes. Nevertheless, it did exhibit
broad-spectrum antibacterial activity at high concentrations and
has been extensively derivatized to establish structure-activity re-
lationships (181–183). Determination of the structures of GKL
compounds in complex with RNAP will be important for their
continued development.

DSHS00507. Using structure-based drug design, an in silico
screen of a publically available drug-like compound library led
to seven hits, with one, DSHS00507 (Fig. 2), showing excellent
inhibitory activity against RNAP holoenzyme formation (184).
This compound, comprising a steroid-like ABC tricyclic car-
boxylic acid and an indolone (Fig. 2, circles 6 and 7, respec-
tively), binds to the �= subunit CH region of RNAP with great
specificity and inhibits in vitro transcription by preventing �A

binding. Antibacterial assays indicated that the compound was
effective against Gram-positive bacteria, including communi-
ty-acquired methicillin-resistant Staphylococcus aureus, and mi-
croscopic analysis gave results consistent with RNAP being the
target for this compound in live cells. Although eukaryotic
RNAPs also contain a CH structure, it shows no sequence sim-
ilarity to the bacterial CH, and DSHS00507 showed no activity

against eukaryotic RNAP in in vitro binding assays or in cell
culture, suggesting that this compound will be a potentially
useful lead for future development.

The SB series. The SB series (Fig. 2) was discovered by com-
pound library screening against E. coli RNAP holoenzyme forma-
tion using an enzyme-linked immunosorbent assay (ELISA)-
based assay (185). These compounds could inhibit E. coli �70

binding to RNAP with an IC50 of 2 to 15 
M, although their
binding site was unknown. The �-independent transcription in-
hibition activity of the SB series suggested that the compound
binding site was on RNAP rather than � (186).

A modified SB series of furanyl rhodanine compounds dem-
onstrated activity against Gram-positive bacteria and inhibited
formation of biofilm (109). However, it was shown that the SB
series could target multiple targets on the membrane and
within bacteria instead of acting as a specific inhibitor of tran-
scription (52), making any further development complicated
until comprehensive structure-activity relationship studies are
performed.

Potential Targets

NusA. As an essential transcription factor, NusA is tightly associ-
ated with RNAP throughout the elongation phase of transcription
(187) and is important for the regulation of several aspects of
transcription elongation, including pausing, termination, and the
formation of termination-resistant (antitermination) complexes
essential for the production of rRNA (157, 188). Recent biochem-
ical work found that NusA is involved in the “immune system” in
E. coli host cells to suppress the toxic activity of foreign genes
(189). NusA has also been shown to interact with translesion DNA
synthesis polymerases and to play a role along with the UvrD
helicase in nucleotide excision repair (190, 191). Residues F59,
R61, E94, and Q96 of the N-terminal domain of NusA are re-
quired for interaction with L895, E899, K900, R903, and E908 on
a conserved region of RNAP called the �-flap tip helix (Fig. 1D),
which forms one side of the RNA exit channel, although the struc-
ture of the complex at high resolution is yet to be elucidated (44,
192, 193). NusA is highly conserved among the eubacteria, is

FIG 7 Inhibition of transcription termination factor Rho activity. (A) The Rho hexamer in its open-ring conformation. Four subunits are shown in slate blue
with the remaining subunits in gray and white, sandwiching the Rho inhibitor bicyclomycin (red sticks). The bicyclomycin binding site is boxed. (B) Expanded
view of bicyclomycin binding site area, with protein shown as ribbons. The bicyclomycin binding site is highlighted in yellow, with contributing amino acids
shown as sticks. ATP is shown in blue in stick format and Mg2� as a cyan sphere. Structure images were prepared using PDB file 1XPO in PyMol v1.7.4
(Schrödinger, LLC).
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unique to this kingdom, and is essential for viability in all organ-
isms tested (173, 174, 194, 195), indicating its importance in tran-
scription and making it an ideal target for the development of new
antitranscription compounds that prevent its interaction with
RNAP.

NusB/E. In bacteria, rRNA is the most abundant RNA species
in the cell and the major component of the ribosomes, and its
rate of synthesis is growth rate limiting. NusB and NusE are
small transcription factors required for the formation of anti-
termination complexes that carry out rRNA synthesis (158,
188, 196). NusE is ribosomal protein S10 and so has dual func-
tions in the cell as both a transcription factor and a component
of the small ribosomal subunit. Antitermination complex as-
sembly initiates when NusB binds to a newly transcribed con-
served RNA sequence in the rRNA operon leader sequence
called boxA. Next, a NusB-NusE heterodimer is formed to
strengthen the interaction with boxA and facilitate binding of
other regulatory factors, and the complex interacts with RNAP
via NusE (188, 197). Therefore, formation of the NusB-NusE-
boxA complex represents a regulatory step in antitermination
complex assembly (198). The NusB-NusE heterodimer is also
able to bind double-stranded RNA (199) and in vivo may bind
the RNA hairpin boxB, which is also part of the leader sequence
of rRNA operons, although it does not appear to be important
for viability (200). Since rapid cell proliferation is a character-
istic of bacterial infection, small molecules that disrupt NusB-
NusE heterodimer formation or interaction with boxA or that
inhibit NusB-NusE-boxA interaction with RNAP have poten-
tial as lead compounds for novel antibiotics (Fig. 6). While the
structure and interactions between NusB, NusE, and RNA
(both boxA and dsRNA) have been determined (199, 201) and
NusE is known to bind to the � subunit of RNAP (202), its
precise binding site on RNAP remains to be determined. NusE
also interacts with the C-terminal domain of NusG (NusGC)
(see below). This small protein is therefore able to interact with

a wide range of proteins and nucleic acids, with very little over-
lap between the binding sites (Fig. 8A). Indeed, the context of
NusE/S10 within the small ribosomal subunit leaves the NusGC

binding site available for interaction and has been suggested to
be important in linking transcription and translation in bacte-
ria (Fig. 8B) (203).

NusG. As the only conserved transcription factor across all
three domains of life (204), bacterial NusG exerts diverse, or
even opposite, functions in the regulation of gene expression.
NusG is an essential protein in Gram-negative bacteria (173,
195) and is involved in enhancing factor-dependent termina-
tion by termination factors such as Rho and bacteriophage
HK022 Nun (205, 206). Together with Rho, NusG is responsi-
ble for limiting the expression of toxic foreign genes on cryptic
phages integrated in the E. coli chromosome (189). On the other
hand, NusG has been shown to increase the transcription elonga-
tion rate both in vitro and in vivo by preventing transcription
pauses incurred by RNAP backtracking (207–209). In conjunc-
tion with other Nus factors (NusA and NusB/E; see above), NusG
participates in the formation of antitermination complexes re-
quired for the rapid and efficient transcription of rRNA operons
(188). NusG has also been suggested to have a role in coupling
transcription and translation (Fig. 8B) (203). NusG consists of an
amino-terminal domain (NusGN) joined by a flexible linker to the
carboxyl-terminal domain (NusGC) (210). As illustrated in Fig. 6,
NusGN competes with � factors for RNAP binding (211), while
NusGC binds mutually exclusively to either Rho or NusE factors
(203). By analogy to the interaction between the Spt4/5 in com-
plex with the CH region from the archaeon Pyrococcus furiosus
(212), the tip of the �=CH region of RNAP binds to a hydrophobic
cavity on NusGN comprising F65, P66, Y68, L70, I93, I103, E107,
V108, and I111. Analysis of a NusB-NusE-NusGC tripartite com-
plex by nuclear magnetic resonance (NMR) indicates that residues
G139, P140, F141, S161, V162, I164, F165, G166, R167, A168,
T169, E172, and D174 are involved in interaction with NusE

FIG 8 NusE is an “interaction hub” that links transcription and translation. (A) Nonoverlapping interactions that NusE makes with NusB (red), NusGC (yellow),
boxA RNA from an rRNA operon leader (green), and double-stranded RNA (dsRNA) (cyan), representative of the boxB hairpin from an rRNA operon leader.
(B) Location of NusE (gray) (also known as ribosomal protein S10) in the context of a translating ribosome. The 30S subunit is shown in green and the 50S
subunit in cyan. NusGC (yellow) would not be sterically inhibited from interacting with NusE integrated into the 30S ribosomal subunit and so could be
important in linking transcription with translation. Structure images were prepared using PDB files 2JVV, 2KVQ, 3CXC, 3D3B, 3R2C, and 3R2D in PyMol v1.7.4
(Schrödinger, LLC).
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(203), whereas mutagenic studies imply a role for G146, V148,
L158, V160, and I164 in interaction with Rho (213). While the
residues involved in interaction with NusE are all solvent exposed,
those implicated in binding to Rho are buried within the hydro-
phobic core of NusGC. NusG is closely related to another special-
ized transcription factor, RfaH, whose C-terminal domain under-
goes drastic rearrangement from a �-barrel form to a NusGC-like
conformation (214), and it is possible that NusGC undergoes con-
formational change upon binding to Rho, although this seems
unlikely as circular dichroism spectra of wild-type and mutant
NusG are all similar (213). The NusGC binding site on Rho is
solvent exposed and is within two small depressions on the outer
surface of the hexameric ring comprising hydrophobic residues
203 to 208 (VLMVLL), V227 and V228 (213). Small molecules
targeting the NusGN-RNAP interaction (with the possibility of
also inhibiting �-RNAP binding), as well as the NusGC-Rho/NusE
binding surface, would have the potential to inhibit the cellular
function of the essential factor NusG in bacteria, although the
apparent hydrophobic nature of the regions involved in the RNAP
�= CH-NusGN and Rho-NusGC interactions may prove difficult
to target with specificity.

NusGSP factors. While essentially all microbes contain a gene
encoding a NusG transcription elongation factor, many also con-
tain paralogous NusG-like proteins that control transcription of
small subsets of genes, and these have been called specialized
NusGs (NusGSPs) (215). The best characterized NusGSP is RfaH,
which is involved in the control of transcription of genes required
for extracytoplasmic functions such as lipopolysaccharide (LPS)
synthesis, toxin production, and phage sensitivity (216). NusGSPs
bind to the same region of RNAP as NusG via their structurally
conserved N-terminal domains (217), and their C-terminal do-
main (as determined for RfaH) undergoes a dramatic structural
transformation into a structure analogous to the C-terminal do-
main of NusG, which permits interaction with NusE/S10, ensur-
ing efficient translation (214). NusGSPs are not essential, but since
they are required for the expression of genes associated with viru-
lence (e.g., LPS and toxin production), compounds that target
their interaction with RNAP and/or NusE may be useful as anti-
infective agents. However, given the similarity of NusGSP binding
sites with NusG, the same problems with producing compounds
of sufficient specificity may be encountered.

Helicases. Helicases are enzymes that catalyze the unwinding of
DNA · DNA, RNA · RNA, and RNA · DNA hybrid molecules into
their component single strands using the energy produced by the
hydrolysis of a nucleoside 5=-triphosphate (218). Helicases are re-
quired for all aspects of nucleic acid metabolism/genome mainte-
nance in both prokaryotic and eukaryotic cells, including transcrip-
tion, RNA splicing, and translation initiation, as well as DNA
replication, repair, and recombination (219). Although the role of
helicases in eukaryotic transcription has been studied for many years
(reviewed in reference 219), other than Rho, transcription in bacteria
is not a process traditionally thought to require the activity of heli-
cases to unwind or rewind DNA/RNA or DNA-RNA hybrids. In E.
coli, UvrD is a superfamily 1 (SF 1) helicase involved primarily in
nucleotide excision repair, a process whereby various DNA lesions
are located and removed (220, 221). More recently, it has been
shown in E. coli that UvrD is able to bind directly to transcribing
RNAP to a level comparable to that for common transcription
factors (such as NusA [191]). This is likely to be a highly conserved
interaction, as the essential UvrD ortholog PcrA from Bacillus

subtilis has also been shown to interact with its cognate RNAP
(222–224). Once the elongation complex is stalled at DNA lesion
sites, UvrD is able to pull RNAP backwards (in the direction op-
posite to that of transcription), exposing the damaged DNA for
repair (191). E. coli RapA (HepA), a Swi2/Snf2 helicase (225), has
been shown to be involved in RNAP recycling and RNA polyade-
nylation (226, 227), and in B. subtilis, HelD is required for efficient
recycling of RNAP, which is achieved synergistically with the �
subunit (228). As our understanding of the roles of helicases in
transcription increases, these important enzymes could also rep-
resent potential targets for the design of transcription inhibitors.

CONCLUSIONS AND PERSPECTIVES

The need for new antibiotics is pressing, and it is essential that new
targets are identified, validated, and developed to ensure that al-
ternative compounds are available to combat organisms that are
resistant to currently available antibiotics. Transcription repre-
sents an excellent target for the continued development of impor-
tant drugs, as it can be targeted through direct and allosteric
inhibition of enzymatic activity or through inhibition of protein-
protein/protein-nucleic acid interactions that are essential for vi-
ability. Historically, high-throughput screens of natural product
libraries have been used in the discovery of potent antitranscrip-
tion inhibitors, and this approach is still yielding compounds that
have great promise as stand-alone compounds or in combination
with existing inhibitors as novel chimeric antibiotic leads (see,
e.g., reference 86).

More directed approaches are now also possible due to the
rapid increase in high-resolution structural information on RNAP
and transcription complexes that is becoming available. Chemical
space can be explored for the design and development of new
inhibitor compounds using more rational approaches that require
the careful construction of templates (pharmacophores) around
which inhibitors are constructed. Such approaches can be used in
the design/modification of compounds that target the enzymatic
activity of RNAP as well as protein-protein interactions.

There are advantages and disadvantages to both approaches.
Through the process of natural selection, most natural products
tend to have very good activity (low MICs) but are also subject to
the coevolution of resistance mechanisms that can result in a short
effective lifetime in the clinic. Furthermore, since current screens
have tended to focus on discovery of compounds isolated from
soil samples, which are dominated by Gram-positive organisms,
few new compounds that target the Gram-negative organisms that
are starting to dominate antibiotic-resistant infections have been
identified. This is exacerbated by the fact that many high-through-
put screens use strains of Gram-negative bacteria carrying tolC
deletions (TolC is a component of Gram-negative efflux systems)
or mutations that result in defective outer membranes, thus allow-
ing easier access of compounds to the cytoplasm. Screening natu-
ral product libraries from other environments may well provide
leads effective against both Gram-positive and -negative bacteria.

Compounds that are rationally designed, screened, and iden-
tified based on the production of a pharmacophore have the ad-
vantage that the target site is known, enabling the rapid develop-
ment of compounds with high specificity. While such inhibitors
often have excellent properties when used in vitro, they may re-
quire substantial modification in order to be developed into useful
clinical compounds; the medicinal chemist is required to perform
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in months/years the tasks that evolution has carried out on natural
products over millennia.

History shows that there is a place for antibiotics derived from
natural products (e.g., penicillin) as well as synthetic compounds
(e.g., fluoroquinones). What is most important is the commit-
ment and investment from government and industry to ensure
that all avenues can be exhaustively explored to ensure the contin-
ued discovery and development of essential medicines. Targeting
bacterial transcription is one area that offers a wealth of untapped
opportunity.
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